海口市论坛

首页 » 问答 » 问答 » 线下分享文字版个人金融借贷场景下的
TUhjnbcbe - 2020/11/17 6:12:00
白癜风医院有哪些 https://m-mip.39.net/nk/mipso_6278509.html

大数据风控是现在金融科技公司白热化竞争的业务场景,那大数据风控到底是什么、这个行业前景如何,有哪些机构在布局竞争、有哪些产品形态?本文将一一为你揭秘。

PS:下文的大数据风控主要针对个人借贷场景来开展。

大数据风控是什么?

大数据风控按照通俗的概念解析:通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。

这句话涵盖大数据风控必要的4个要素:

原材料:大数据。

实现方式:技术模型。

目标人群:场景中的群体。由于本文主要指个人借贷场景,则目标人群是借款人。还有其他场景,例如信用卡场景对于信用卡申请人、购物场景针对分期用户、租房场景针对租金分期用户、投保场景针对投保人、投资理财针对投资人等。

目的:风险控制和风险提示。一般机构主要有2个目的,目的:针对降低损失,需要对好坏用户进行识别,目的2:针对获取最大化利润,需要对用户资质分层。

潜在的特点是可以大批量实时实现风险控制和风险提示。

传统风控与大数据风控的区别

大数据风控的叫法其实就是为了与传统风控做区分。传统风控在年之前相对比较普遍,其特点是线下风控场景为主,需要用户填写一大堆个人信息及提供工作证明、流水证明、住址证明等,审核时间一般为-3天,银行体系会更长3-7天左右。

正常情况,一份用户资料表需要填写包括以下这些信息:姓名、性别、年龄、身份证号、家庭地址、学历、家庭人数、婚姻状态、单位名称、单位电话、工作职务、单位性质、收入来源、收入水平、配偶详情、经营企业详情、其他资质等信息。除了这些信息,还需要提供纸质的身份证复印件、工作收入证明(盖章)、半年银行流水、水电费或房屋租赁合同等。另外,银行等持牌机构还会查询用户在央行的征信报告,用于辅助风控。

这些数据潜在的意义可以这样解读:除了年龄代表准入门槛,一般的借贷产品要求借款人需要有22岁以上才可以申请,现金贷产品会把年龄门槛放到8-20岁及以上。部分产品要求学历是高中及以上,或者要求非在校生。其他的分组后分别代表借款用户的还款能力,负债情况及信用情况(这里不细分还款意愿)。

直接体现或者间接体现还款能力的:

.家庭人数。家里人多,你还不起,催收后有人可以帮你还;

2.婚姻状态,大部分家庭,结婚的比未婚的家庭收入或经济稳定更好;

3.单位名称、单位电话、工作职务、单位性质、收入来源、收入水平,直接体现收入水平及收入稳定性情况;

4.经营企业详情、其他资质等信息。

体现负债情况和信用情况的:央行征信报告

拿到这些信息及材料后,由风控专员凭借经验及按照标准化流程审核材料真实性,例如工作收入证明通过拨打公司电话核查有无本人及职位情况、其他资质材料看印章判断真实性,流水会打银行电话抽查真实性等。

传统风控的模式及节奏是不符合互联网金融高速发展的节奏的,互联网金融时代都是按秒级几百上千用户群同时发起贷款申请,如果按照人工审核,从进件到批核整个流程可能要个月时间都没法完成。

传统风控向大数据风控的升级,即是行业发展的需要,也受益于各类用户数据被标准化对外,也就是API的形式对外输出,金融机构可以直接接入各种必须的数据接口,用于获取用户的数据。

整个流程从用户填写将近所有的信息,变成只要提供姓名、身份证、银行卡号、手机号这个4个要素就可以获得全部或大部分风控必需的用户信息。

大数据风控的快捷得益于各种标准化的数据接口,但由于代表用户的各种数据是分别存在与不同的机构中,这些数据原则上需要用户授权才能对外,而且数据输出需要进行合规脱敏的处理。所以大数据风控需要获取到与传统风控要求用户填写的所有信息或者直接或间接证明用户还款能力、还款意愿、负债情况及信用情况必须的数据,每个类型需要接入几个数据来源,缺失的类型还需要找到能够替代的数据接口。大数据风控需要的数据类型,在后面章节再详解。

哪些行业及场景需要大数据风控

除了借贷场景,还有哪些场景需要用到大数据风控?

这里,猎人简单举几个例子:

金融行业最常见就是投融资板块,投资板块,需要对非法集资、洗钱、资金盗刷等风险进行防控;借贷板块,需要进行贷前进行反欺诈及用户风险识别、授信风险评估、贷中风险评估及贷后风险预警。

电商行业需要在用户注册环节进行防薅羊毛、对已注册充值用户需要防止其资金被盗刷、账户被盗及发生交易后对经常拒付的情况需要识别。

保险行业特别是寿险产品,需要对投保人身份进行核实,防止有不良行为投保用户过审发生骗保。

除了这些常见的行业场景,其实各行各业只要涉及到个人信息及资金交易的,都会用到大数据风控,唯一的区别就是针对不同场景的需要的数据及策略是不一样的。

大数据风控行业有哪些机构参与

传统风控基本都是由金融机构内部的风险部门及门店经理组成,大数据风控更多是由第三方机构提供。

大数据风控行业主要有以下7大类型机构参与:

监管部门旗下或牵头的机构:百行征信、互金协会及小贷协会等;

非银放贷机构旗下金融科技公司:持牌小贷公司、P2P机构等,例如玖富及宜信;

电商旗下金融科技公司:京东金融、蚂蚁金服等;

互联网巨头旗下金融科技公司:度小满金融、腾讯云等;

银行系金融科技公司:银联智策、建行金科等;

企业服务类:系统服务商、技术提供商、数据中介商等,例如同盾及百融;

支付机构旗下金融科技公司:天翼征信:新颜征信等。

这些机构拥有场景、资金、放贷业务三者全部或者其中一块要素,这些要素决定了其在大数据风控的竞争壁垒。

场景代表有源源不断的数据,及精准的客群画像,可以无成本或低成本用于风控业务;

资金代表了可以随意切进任一借贷场景,获取数据及影响产品形态;

放贷业务表示在特定场景有一定的用户借贷表现的数据及基础的风控能力,部分机构的成熟风控能力还可以直接对外输出变现,切入到体系外的场景获取更多的数据。

因此,数据量级、数据成本、风控经验、资金风险承受能力综合决定了一家机构在大数据风控是否有足够的竞争力。

大数据风控机构存在的意义

个人借贷金融板块的大数据风控行业的前景,主要可以看2方面,一个是不含房贷的国内消费金融市场规模及渗透情况,只要消费金融市场的存量客户,有复贷需求,且增量客群还有转化空间,代表着借贷业务是持续发生的,则这里对风控的需求是持续不断的。

我国个人消费金融的市场规模从年的2亿到年的将近38亿,翻了3倍有多,而不含房贷的规模到年则到了8亿,渗透率为22.36%,如果到年渗透率可以提升2.5%,则市场规模有个3.5万亿的提升。这个空间足够众多公司的在此竞争。

大数据风控机构其中的一个收入来源就是数据接口的调用次数计费,这个调用次数息息相关的是借贷用户数量。而央行内收录的大部分信贷记录用户都是属于银行等相对高质量用户群体,这些群体都有可能下沉到非银系的互联网金融中发生贷款行为,同时不在央行体系的信贷用户,都是互联网消费金融机构的潜在客户。通过央行查询量,可以侧面知道在银行体系信贷需求的用户数量,这部分用户80%以上是无法获取银行体系的贷款的,因此理论上是可以成为消费金融机构的潜在客群。年的6.3亿次查询到的7.6亿次查询,说明需要信贷的用户非常多,但这么大的查询量,有信贷记录人数才增加了亿,说明大部分用户都无法获得贷款或者非常需要贷款,会同时在多个机构申请贷款,才会每人产生近0次的查询次数。

处于消费金融产业链什么位置

已知大数据风控机构在消费金融场景中是非常有前景的,我们了解下其在消费金融产业链中的角色及功能,消费金融产业链的角色包括:

监管机构:银保监会、中国人民银行等;

消费金融服务提供商:商业银行、电商平台、持牌公司、分期平台、非持牌机构;

资金提供方:自有资金、信托、ABS、银行借贷、同业拆及P2P;

第三方支付机构:负责提供支付通道,给予消金机构放款或者代扣还款;

催收或不良资产机构:负责贷后逾期不还及失联客户;

消费者:不同场景的消费需要的资金需求是不一样的;

风控及征信机构:负责提供大数据风控服务,包括数据、技术服务、模型策略等。

除了消费者外,产业链中的各个角色都有附加风控及征信机构角色的可能,对外输出大数据风控能力。

个贷风控场景及解决方案

猎人将消费金融大数据风控场景分为5个环节6个应用场景,

5个环节包括反欺诈、身份核验、贷前审核、贷中监控及贷后催收;

6个应用场景分别对应不同的环节:

反欺诈环节:对申请借贷的用户群体进行反欺诈识别,识别能力主要依赖于风险名单,高危名单(在逃、***、涉案)、法院失信被执行人等名单,另外还有虚拟手机号、风险IP、风险地区等名单,通过名单进行反欺诈识别。

再深入点,可以在用户使用的设备端进行反欺诈识别,查看是否是风险设备;还可以通过群体关联,找出是否团伙欺诈行为,例如申请集中在一个IP地址,一个户籍地,通讯录都有同一个人联系方式等。

身份核验环节:进行借贷同行业身份核验。在反欺诈识别过程中,无风险用户来到身份核验环节,这里可以通过身份证2要素接口,核验用户的姓名身份证号是否正真实;通过活体识别判断是否用户本人在操作;通过运营商核验接口,核验用户的姓名身份证手机号是否一致,手机号是否本人实名使用;通过银行卡核验,核验用户的提供的银行卡是否本人,防止贷款成功后,贷款资金到他人账户被冒用。

贷前审核环节:

授权信息获取,针对身份核验通过的用户,进行有感知或无感知的必要信息获取,为后续模型评分准备好数据。无感知获取的包括多头借贷数据、消费金融画像数据、手机号状态和时长数据等;有感知(需要用户提供相关账户密码)获取的数据有:运营商报告、社保公积金、职业信息、学历信息、央行征信等。

借贷用户的分层及授信,针对以获取的用户相关数据,根据不同的算法模型输出针对用户申请环节的评分卡、借贷过程的行为评分卡、授信额度模型、资质分层等模型。不同机构对于不同环节的模型评分叫法不一样,目的都是围绕风险识别及用户资质评估。

贷中监控:之前环节获取的数据大部分还可以用于贷后监控,监控各项正常指标是否往不良转变,例如本来无多头借贷情况的,申请成功贷款后发现该用户在别的地方有多笔借贷情况,这时可以将该用户列为重点

1
查看完整版本: 线下分享文字版个人金融借贷场景下的